

FROM MACHINE LEARNING, TO DEEP LEARNING

Jeremy Howard fast.ai & USF

j@fast.ai @jeremyphoward

Personalize

Yahoo! Auctions

bid & sell for free

Win 6 days in Hawaii!
Go to fox.com FOX

Park Your **Domain Free**

Search advanced search

Yahoo! Mail - Get your free e-mail account today!

Shopping - Yellow Pages - People Search - Maps - Travel Agent - Classifieds - Personals - Games - Chat Email - Calendar - Pager - My Yahoo! - Today's News - Sports - Weather - TV - Stock Quotes - more...

Arts & Humanities Literature, Photography...

Business & Economy Companies, Finance, Jobs...

Computers & Internet

Internet, WWW, Software, Games...

Education Universities, K-12, College Entrance..

Entertainment Cool Links, Movies, Humor, Music...

Government

Military, Politics, Law, Taxes...

Health

Medicine, Diseases, Drugs, Fitness...

News & Media Full Coverage, Newspapers, TV ...

Recreation & Sports Sports, Travel, Autos, Outdoors...

Reference

Libraries, Dictionaries, Quotations...

Regional

Countries, Regions, US States...

Science

Biology, Astronomy, Engineering...

Social Science

Archaeology, Economics, Languages...

Society & Culture

People, Environment, Religion...

In the News

· King Hussein of Jordan dies Online: Lewinsky video <u>testimony</u>

 NASA comet mission · NBA season opens

Weekend's top movies

more...

Inside Yahoo!

· Y! Personals - find a Valentine

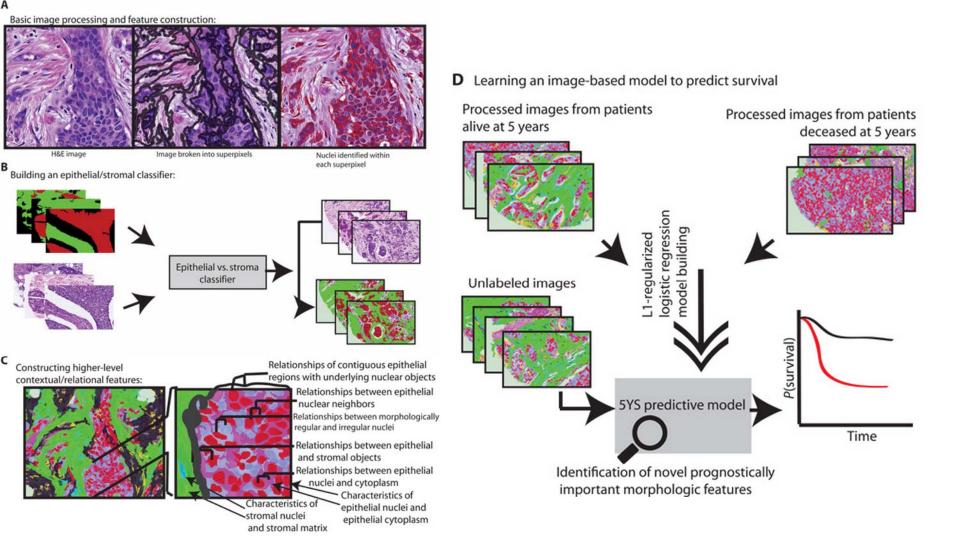
Shop for your Valentine

 Y! Clubs - create your own

more ...

Search the web using Google!

Google Search | I'


I'm feeling lucky

Special Searches
Stanford Search
Linux Search

Why use Google!
Press about Google!
Help!
Company Info
Jobs at Google
Google! Logos
Making Google! the Default

Get Google! updates monthly: your e-mail

Subscribe Archive

HORIZONTAL APPLICATIONS

Machine Learning

MARKETING APPLICATIONS

Predicting Lifetime Value (LTV)	Wallet share estimation	Churn	Customer segmentation
Product mix	Cross selling	Recommendation algorithms	Up-selling
Channel optimization	Discount targeting	Reactivation likelihood	Adwords optimization and ad buying

RISK APPLICATIONS

Credit risk

Treasury or currency risk

Fraud detection

Accounts Payable Recovery

Anti-money laundering

HUMAN RESOURCES APPLICATIONS

Resume screening

Employee churn

Training recommendation

Talent management

MORE HORIZONTAL APPLICATIONS...

Sales

Lead prioritization

Customer support

- Call routing
- Call center message optimization
- · Call center volume forecasting

Logistics

Demand forecasting

VERTICAL APPLICATIONS

Machine Learning

HEALTHCARE APPLICATIONS

Claims review prioritization	Medicare/medicaid fraud	Medical resources allocation
Alerting and diagnostics from real-time patient data	Prescription compliance	Physician attrition
Survival analysis	Medication (dosage) effectiveness	Readmission risk

RETAIL APPLICATIONS

Price Product layout in Location of new Merchandizing optimization stores stores Inventory Market Basket Shrinkage Warranty Management analytics **Analytics** Analysis (how many units) Next Best Offer Cannibalization In store traffic **Analysis** Analysis patterns

TRAVEL APPLICATIONS

Aircraft scheduling

Seat/gate management

Air crew scheduling

Dynamic pricing

Customer complaint resolution

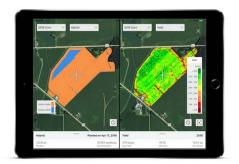
Maintenance optimization

Tourism forecasting

TELCO OPPORTUNITIES

Network optimization

Upgrade planning


Maintenance

Risk management

Fraud

Credit

Life Sciences	Insurance	Hospitality	Manufacturing	Direct Marketing	Construction	Agriculture	Mall Operators	Education	Utilities
Identifying biomarkers Drug/chemical discovery Analyzing study results	Claims prediction	Dynamic priong	Failure analysis	Response rates Segmentations for multings			Tenant capacity to	Automated assay	Optimize
Identifying negative responses Diagnostic test development Diagnostic targeting	Claims handling Price sensitivity	Promos/up grades/o ffens	Quality management	Reactivation likelihood	Contractor performance	Yield management	pay	scoring	Optimize Distribution Network
Predicting drug demand Prescription adherence Putative safety signals Social media marketing	Investments Agent & branch performance	Table management & reservations	Inventory management	Discount targeting					Predict
Image analysis Clinical trial design COGS optimization	DM, product mix	Warkforce munagement	Warranty/pricing	Phone marketing Email Marketing	Design issue prediction	Autometion	Tenant selection	Dynamic courses	Predict Commodity Requirements

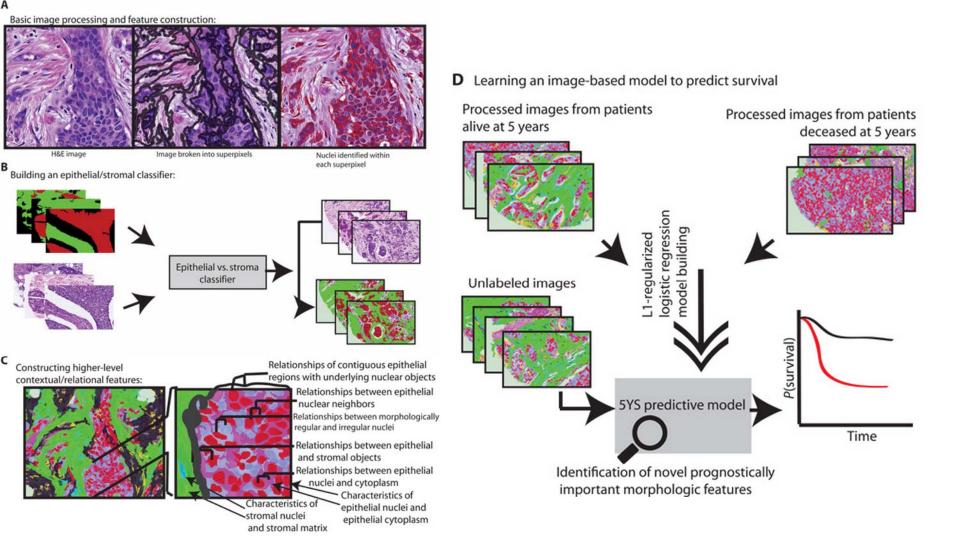
COMPARE MAPS SIDE-BY-SIDE

Use side-by-side maps to compare critical data layers in your field, including yield, soil maps, application rate, seed population rate and more.

YIELD ANALYSIS

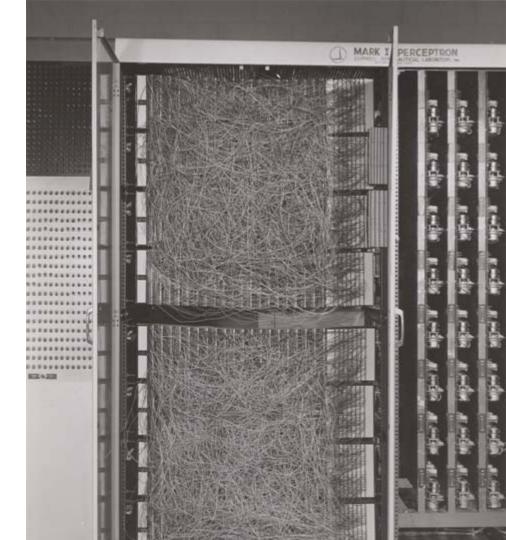
Easily analyze performance by hybrid, soil type, or by your customized regions, so you can make the best agronomic decisions yearround.

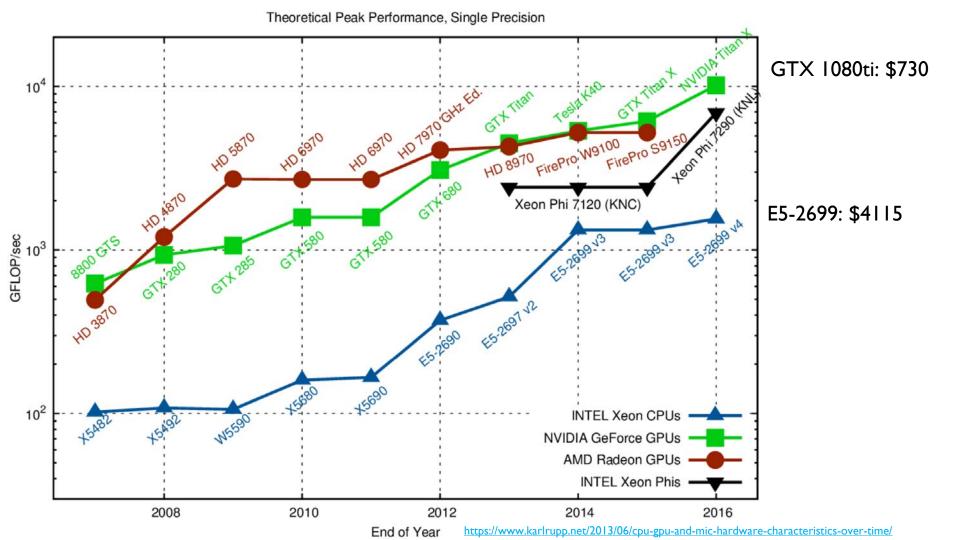
FIELD REGION ANALYSIS


Use your data layers to identify and save field regions for deeper analysis.

Then, measure the impact of your agronomic decisions on yield in each region after harvest.

...to deep learning


Neural Network Infinitely flexible function


Gradient Descent All-purpose parameter fitting

GPUs

Fast and scalable

MARK I PERCEPTRON AT THE CORNELL AERONAUTICAL LABORATORY (1957)

"the team decided to enter the contest at the last minute and designed its software with no specific knowledge about how the molecules bind to their targets... working with a relatively small set of data"

student team led by the computer cientist Geoffrey E. Hinton used deeparning technology to design software

The technology, called de to use in services like App which is based on Nuance recognition service, and it machine vision to identify

But what is new in recent accuracy of deep-learning neural networks or just "r

"There has been a number of stunning new results with deep-learning methods," said Yann LeCun, a computer scientist at New York University who did pioneering research in handwriting recognition at Bell Laboratories.

"The kind of jump we are seeing in the accuracy of these

The New Hork Times WORLD N.Y. / REGION

TODAY'S PAPER

VIDEO

HOME PAGE

Science

BUSINESS TECHNOLOGY HEALTH SPORTS OPINION SCIENCE ENVIRONMENT SPACE & COSMOS

🗋 www.nytimes.com/2012/11/24/science/scientists-see-advances-in-deep-learning- i 🔍 🏏 🐧 🐧 🗓 🕞 🔳 📶 🌣 😀

U.S. Edition -

Scientists See Promise in Deep-Learning Programs

MOST POPULAR

Deep Learning Framework for Recognition of Cattle using Muzzle Point Image Pattern

Article (PDF Available) in Measurement 116 · October 2017 with 68 Reads

DOI: 10.1016/j.measurement.2017.10.064

Santosh Kumar

ıl 14.65 · IIIT Naya Raipur, Chhattisgarh

Amit Pandey

11 2.28 · Indian Institute of Technology (...

Satwik Kondamudi

اله 2.28 · Banaras Hindu University

- 3

Anand Mohan

سان 20.91 · Indian Institute of Technology (...

Show more authors

Animal biometrics is a frontier area of computer vision, pattern recognition and cognitive science to plays the vital role for the registration, unique identification, and verification of livestock (cattle). The existing handcrafted texture

feature extraction and appearance based feature representation techniques are unable to perform the animal

recognition in the unconstrained environment. Recently deep learning approaches have achieved more at recognition of species or individual animal using visual features. In this research, we propose the deep le based approach for identification of individual cattle based on their primary muzzle point (nose pattern) i pattern characteristics to addressing the problem of missed or swapped animals and false insurance cla major contributions of the work as follows: (1) preparation of muzzle point image database, which are no available, (2) extraction of the salient set of texture features and representation of muzzle point image of

the deep learning based convolution neural network, deep belief neural network proposed approaches. The stacked denoising auto-encoder technique is applied to encode the extracted feature of muzzle point images and (3) experimental results and analysis of proposed approach. Extensive experimental results illustrate that the proposed deep learning approach outperforms state-of-the-art methods for recognition of cattle on muzzle point image

database. The efficacy of the proposed deep learning approach is computed under different identification settings.

efficacy of the proposed deep learning approach is computed under different identification settings. With multiple test galleries, rank-1 identification accuracy of 98.99% is achieved.

Computers and Electronics in

Agriculture

Volume 93, April 2013, Pages 111-120

Automatic identification of marked pigs in a

pen using image pattern recognition

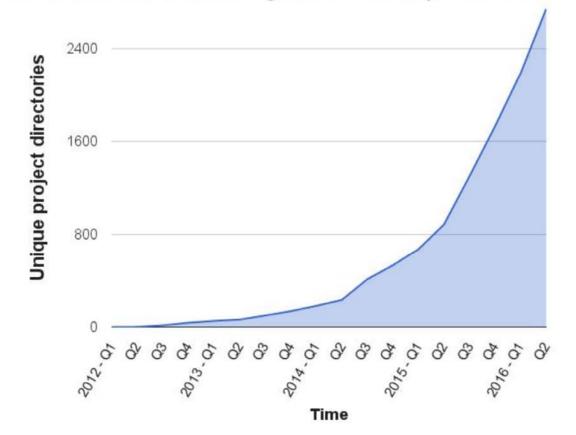
Mohammadamin Kashiha ^a , Claudia Bahr ^a , Sanne Ott ^{b, c} , Christel P.H. Moons ^b , Theo A. Niewold ^c , F.O. Ödberg ^b , Daniel Berckmans ^a

⊞ Show more

0 2 0

i onow more

https://doi.org/10.1016/j.compag.2013.01.013


Get rights and content

Abstract

Taking visual labelling of videos by an experienced ethologist as the gold standard, pigs could be identified with an average accuracy of 88.7%. It was also shown that behaviours such

Growing Use of Deep Learning at Google

of directories containing model description files

Across many products/areas:

Android Apps drug discovery Gmail Image understanding Maps Natural language understanding Photos Robotics research Speech Translation YouTube ... many others ...

MIT Technology Review

Search Q

Subscribe

st Lists+ Topics+ The Download Magazine Events More+

Login / Create an account

Deep Learning
With massive amounts
of computational power,
machines can now
recognize objects and
translate speech in real
time. Artificial
intelligence is finally
getting smart.

time. Artificial intelligence is finally getting smart. by Robert D. Hof by Roy Kurzweil met with Google CEQL arry Page last, July be

hen Ray Kurzweil met with Google CEO Larry Page last July, he
wasn't looking for a job. A respected inventor who's become a
machine-intelligence futurist, Kurzweil wanted to discuss his
upcoming book How to Create a Mind. He told Page, who had read an

Newsweek

WHAT'S BIGGER THAN FIRE AND ELECTRICITY? ARTIFICIAL INTELLIGENCE, SAYS GOOGLE BOSS

BY ANTHONY CUTHBERTSON ON 1/22/18 AT 8:56 AM

TECH & SCIENCE

GOOGLE

ARTIFICIAL INTELLIGENCE

Google CEO Sundar Pichai believes artificial intelligence could have "more profound" implications for humanity than electricity or fire, according to recent comments.

Pichai also warned that the development of artificial intelligence could pose as much risk as that of fire if its potential is not harnessed correctly.

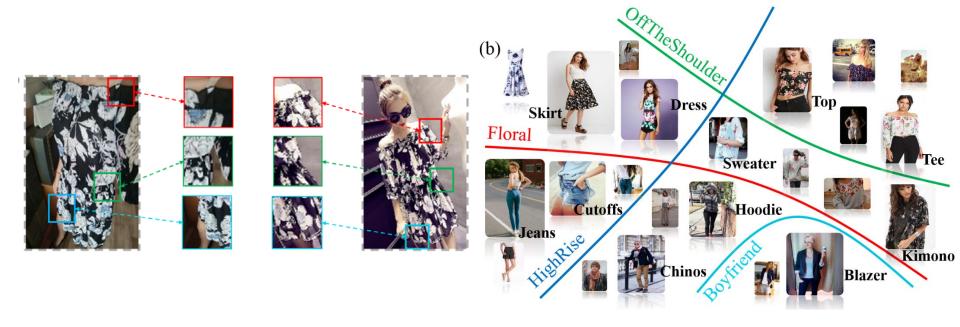
"Al is one of the most important things humanity is working on," Pichai said in an interview with MSNBC and Recode, set to air on Friday, January 26. "It's more profound than, I don't know, electricity or fire."

Lee Jin-man / AP

How Google's AlphaGo Beat a Go World Champion

Inside a man-versus-machine showdown

DEEPMIND AI REDUCES GOOGLE DATA CENTRE COOLING BILL BY 40%

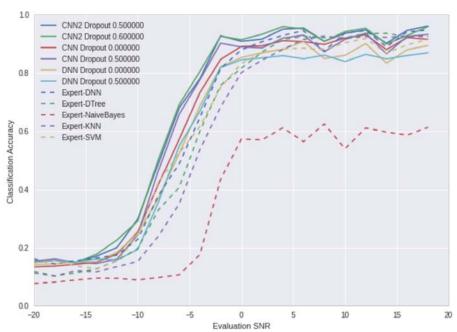

WEDNESDAY, 20TH JULY, 2016

by Rich Evans, Research Engineer, DeepMind and Jim Gao, Data Centre Engineer, Google

DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations

Ziwei Liu Ping Luo Shi Qiu Xiaogang Wang Xiaoou Tang Multimedia Laboratory, The Chinese University of Hong Kong

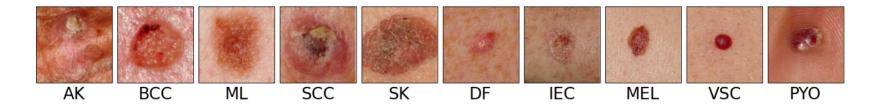
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2016

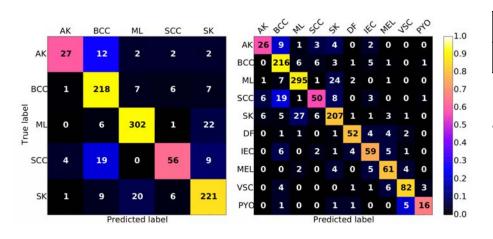

Convolutional Radio Modulation Recognition Networks

Timothy J. O'Shea¹, Johnathan Corgan², and T. Charles Clancy¹

Bradley Department of Electrical and Computer Engineering, Virginia Tech, 900 N
 Glebe Road, Arlington, VA 22203 USA oshea@vt.edu
 Corgan Labs, 6081 Meridian Ave., Suite 70-111, San Jose, CA 95120
 johnathan@corganlabs.com

At low-SNR the best CNN model is outperforming expert feature based systems by 2.5-5dB of SNR...


This is a significant performance improvement, and one that could potentially at least double effective coverage area of a sensing system



Deep Features to Classify Skin Lesions

Jeremy Kawahara, Aïcha BenTaieb, and Ghassan Hamarneh

Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Canada

lesion seg.	10-class = $67%$
per-image-mean	10-class = 81.8 %

"These experiments indicate that deep features do generalize well to these skin images and outperform competing approaches [4, 5], despite our approach not using (nor requiring) any lesion segmentations....
previous work reported 15.6% accuracy for [Actinic Keratosis] where here we improve it to 60%"

Massively Multitask Networks for Drug Discovery

Bharath Ramsundar*,†, ° Steven Kearnes*,† Patrick Riley° Dale Webster° David Konerding° Vijay Pande† RBHARATH@STANFORD.EDU
KEARNES@STANFORD.EDU
PFR@GOOGLE.COM
DRW@GOOGLE.COM
DEK@GOOGLE.COM
PANDE@STANFORD.EDU

Model	$ PCBA \\ (n = 128) $	$\begin{array}{c} \text{MUV} \\ (n=17) \end{array}$	$ \begin{array}{c} \text{Tox21} \\ (n = 12) \end{array} $	Sign Test CI
Logistic Regression (LR)	.801	.752	.738	[.04, .13]
Random Forest (RF)	.800	.774	.790	[.06, .16]
Single-Task Neural Net (STNN)	.795	.732	.714	[.04, .12]
Pyramidal (2000, 100) STNN (PSTNN)	.809	.745	.740	[.06, .16]
Max{LR, RF, STNN, PSTNN}	.824	.781	.790	[.12, .24]
1-Hidden (1200) Layer Multitask Neural Net (MTNN)	.842	.797	.785	[.08, .18]
Pyramidal (2000, 100) Multitask Neural Net (PMTNN)	.873	.841	.818	-

THE WALL STREET JOURNAL

\$12 FOR 12 W

Hom

rld

U.S

. Politi

cs E

nomy

siness

Tech

Markets

Opinior

Arts

ife Real Estate

Google Pushes Into Machine Learning

What if Facebook Had an Opposing-Viewpoints Button?

The Polaroid-Style Instant Camera Is Back

RE READING A PREVIEW OF A PAID ARTICLE.

SUBSCRIBE NOW

TO GET MORE GREAT CON

TECH

Google Isn't Playing Games With New Chip

Built in secret, Tensor Processing Unit has strategic role in speeding up artificial intelli

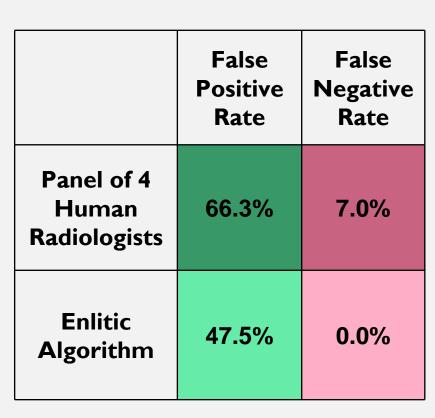
Recommended Videos

World's Largest Plane Lands in Australia

Google unveils a custom chip, which it says advances computing performance by three generations.

Credit: Google

HOME HEALTHCARE TECHNOLOGY BLOG ABOUT US CAREERS



Welcome To Enlitic

Enlitic uses recent advances in machine learning to make medical diagnostics faster, more accurate, and more accessible. The company's mission is to provide the tools that allow physicians to fully utilize the vast stores of medical data collected today, regardless of what form they are in - such as medical images, doctors' notes, and structured lab tests. To realize this vision, we are building on state-of-the-art deep learning algorithms and partnering with top research hospitals and medical device manufacturers.

"Medical diagnostics is, at its heart, a data problem - turning images, lab tests, patient histories, and so forth into a diagnosis and proposed intervention. Recent applied machine learning breakthroughs, especially using deep learning, have shown that computers can rapidly turn large amounts of data of this kind into deep insights, and find subtle patterns. This is the biggest opportunity for positive impact using data that I've seen in my 20+ years in the field."

Business Markets Tech Personal Finance Small Business Luxury

stock tickers

Could this computer save your life?

A company is looking to change that margin of error by bringing a super-smart computer into the examination room.

And screenings don't always help: A 2013 study by Oxford University found "no evidence" that screening programs are responsible for the decline in breast cancer, and a study by the Huntsman Cancer Institute last year found that colon cancer is missed in about 6% of colonoscopies.

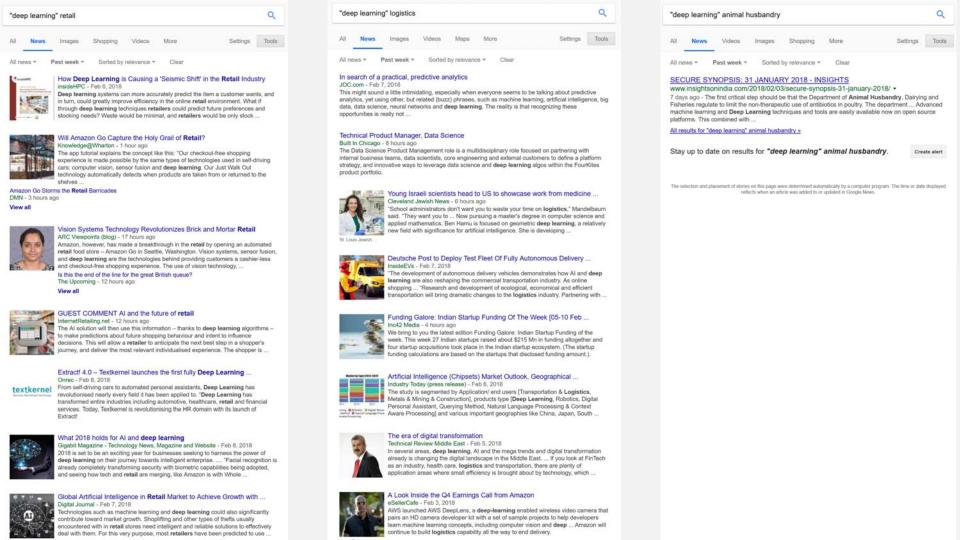
"In one panel of scans that we looked at, when you look at the number of times that radiologists sent someone home with a clean bill of health, about 7% of the time that patient was ultimately found to have cancer," said John Zedlewski, a data scientist with Enlitic, a medical technology company.

glassdoor

Firefighter free falls into retirement

See & Spray for cotton weeding

Now introducing intelligent weeding in cotton



Sense & Decide

Computer vision sees every plant and determines appropriate treatment for each

Massive libraries of plant images enable our machine's unparalleled ability to distinguish subtle differences between cotton plants and weeds of many species and sizes

See & Spray does not rely on spacing or color to identify weeds - it intelligently and instantaneously recognizes the difference between plants even in conditions that would challenge the human eye

This is a list of implementations of deep learning methods to biology, originally published on Follow the Data. There is a slant towards genomics because that's the subfield that I follow most closely.

Please, contribute to this growing list, especially in categories that I haven't covered well! Also, do add your contributions to GitXiv as well if you can.

You might also want to refer to the awesome deepbio list.

Table of contents

- Reviews
- General
- Chemoinformatics and drug discovery
- Biomarker discovery
- Proteomics
- Metabolomics
- Generic 'omics tools
- Genomics
- Variant calling
- Gene expression
- Predicting enhancers and regulatory elements
- Methylation
- Single-cell applications
- Non-coding RNA
- Population genetics
- Neuroscience

Reviews

These are not implementations as such, but contain useful pointers.

Opportunities And Obstacles For Deep Learning In Biology And Medicine [bioRxiv preprint]

This impressive collaborative review was written completely in the open on Github. It is focused on discussing how deep learning may be able to transform patient classification and treatment as well as fundamental biological research in the future, and what the main obstacles are that could prevent it from happening. A lot of interesting points are brought up here. Together with the review listed below, which has a more technical slant, you will get a good overview of how deep learning is used and can be used in biology and medicine.

Deep learning for computational biology [open access paper]

Opportunities And Obstacles For Deep Learning In Biology And Medicine [bioRxiv preprint]

This impressive collaborative review was written completely in the open on Github. It is focused on discussing how deep learning may be able to transform patient classification and treatment as well as fundamental biological research in the future, and what the main obstacles are that could prevent it from happening. A lot of interesting points are brought up here.

Together with the review listed below, which has a more technical slant, you will get a good overview of how deep learning is used and can be used in biology and medicine.

Deep learning for computational biology [open access paper]

This is a very nice review of deep learning applications in biology. It primarily deals with convolutional networks and explains well why and how they are used for sequence (and image) classification.

Deep learning for health informatics [open access paper]

An overview of several types of deep nets and their applications in translational bioinformatics, medical imaging, "pervasive sensing", medical data and public health.

other thing... it's totally free!

HOME

ABOUT GETTING ST

ED LESSONS

~

CONTA

BLOG

Welcome to fast.ai's 7 week course, **Practical Deep Learning**For Coders, Part 1, taught by Jeremy Howard (Kaggle's #1

competitor 2 years running, and founder of Enlitic). Learn how to build state of the art models without needing graduate-level

math—but also without dumbing anything down. Oh and one

"I highly recommend this course. Jeremy is an amazing teacher"

- Erik Brynjolfsson: Professor at MIT Sloan; Author of The Second Machine Age

Reducing overfitting Resnet In [4]: import resnet50; reload(resnet50) from resnet50 import Resnet50 In [5]: rn0 = Resnet50(include_top=False).model In [7]: rn0.output_shape[1:] batches = get_batches(path+'train', shuffle=False, batch_size=batch_size) YOU CAN CODE, YOU CAN DO DEEP LEARNING classes, trn classes, val labels, trn labels val filenames, filenames, test filenames) = get classes(path)